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Abstract 

Background: SARS-CoV-2, the virus causing coronavirus disease 2019 (COVID-19), is rapidly 

spreading across sub-Saharan Africa (SSA). Hospital-based care for COVID-19 is particularly 

often needed among older adults. However, a key barrier to accessing hospital care in SSA is 

travel time to the healthcare facility. To inform the geographic targeting of additional healthcare 

resources, this study aimed to determine the estimated travel time at a 1km x 1km resolution to 

the nearest hospital and to the nearest healthcare facility of any type for adults aged 60 years 

and older in SSA.  

Methods: We assembled a unique dataset on healthcare facilities’ geolocation, separately for 

hospitals and any type of healthcare facility (including primary care facilities) and including both 

private- and public-sector facilities, using data from the OpenStreetMap project and the KEMRI 

Wellcome Trust Programme. Population data at a 1km x 1km resolution was obtained from 

WorldPop. We estimated travel time to the nearest healthcare facility for each 1km x 1km grid 

using a cost-distance algorithm. 

Findings: 9.6% (95% CI: 5.2% – 16.9%) of adults aged ≥60 years had an estimated travel time 

to the nearest hospital of longer than six hours, varying from 0.0% (95% CI: 0.0% – 3.7%) in 

Burundi and The Gambia, to 40.9% (95% CI: 31.8% – 50.7%) in Sudan. 11.2% (95% CI: 6.4% – 

18.9%) of adults aged ≥60 years had an estimated travel time to the nearest healthcare facility 

of any type (whether primary or secondary/tertiary care) of longer than three hours, with a range 

of 0.1% (95% CI: 0.0% – 3.8%) in Burundi to 55.5% (95% CI: 52.8% – 64.9%) in Sudan. Most 

countries in SSA contained populated areas in which adults aged 60 years and older had a 

travel time to the nearest hospital of more than 12 hours and to the nearest healthcare facility of 

any type of more than six hours. The median travel time to the nearest hospital for the fifth of 

adults aged ≥60 years with the longest travel times was 348 minutes (equal to 5.8 hours; IQR: 

240 – 576 minutes) for the entire SSA population, ranging from 41 minutes (IQR: 34 – 54 
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minutes) in Burundi to 1,655 minutes (equal to 27.6 hours; IQR: 1065 – 2440 minutes) in 

Gabon.  

Interpretation: Our high-resolution maps of estimated travel times to both hospitals and 

healthcare facilities of any type can be used by policymakers and non-governmental 

organizations to help target additional healthcare resources, such as new make-shift hospitals 

or transport programs to existing healthcare facilities, to older adults with the least physical 

access to care. In addition, this analysis shows precisely where population groups are located 

that are particularly likely to under-report COVID-19 symptoms because of low physical access 

to healthcare facilities. Beyond the COVID-19 response, this study can inform countries’ efforts 

to improve care for conditions that are common among older adults, such as chronic non-

communicable diseases.  

Funding: Bill & Melinda Gates Foundation 
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Research in context 

Evidence before this study: We searched MEDLINE from January 1966 until May 2020 for 

studies with variations of the words ‘physical access’, ‘distance’, ‘travel time’, ‘hospital’, and 

‘healthcare facility’ in the title or abstract. To date, the only studies to systematically map 

physical access to healthcare facilities in sub-Saharan Africa at a high resolution examined 

access to emergency hospital care (with a focus on women of child-bearing age), access to 

care for children with fever, travel time to the nearest healthcare facility for specific populations 

at risk of viral haemorrhagic fevers, and travel time to the nearest regional- or district-level 

hospital.  

Added value of this study: The added value of this study is threefold. First, we assembled a 

new dataset of GPS-tagged healthcare facilities, which combines two unique data sources for 

the geolocation of healthcare facilities across sub-Saharan Africa: one-based on crowd-sourced 

data from OpenStreetMap and one based on information from ministries of health, health 

management information systems, government statistical agencies, and international 

organizations. Second, this is the first study to comprehensively map both hospitals and primary 

healthcare facilities, and including both public- and private-sector facilities, across sub-Saharan 

Africa. Third, because the COVID-19 epidemic causes a far higher need for hospital services 

among older than younger population groups, we focus on physical access to healthcare for the 

population aged 60 years and older, which is a population group that is rarely studied in 

investigations of healthcare demand and supply in the region. As such, our maps can inform not 

only the health system response to COVID-19, but more generally to conditions that are 

common among older adults in the region, particularly chronic non-communicable diseases and 

their sequelae.  

Implications of all the available evidence: Low physical access to healthcare in sub-Saharan 

Africa will be a major barrier to receiving care for adults aged 60 years and older with COVID-

 . CC-BY 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted August 26, 2020. .https://doi.org/10.1101/2020.07.17.20152389doi: medRxiv preprint 

https://doi.org/10.1101/2020.07.17.20152389
http://creativecommons.org/licenses/by/4.0/


5 

19. However, there is a wide degree of variation in physical access to healthcare facilities for 

older adults in the region both between and within countries, which likely has an important 

bearing on the extent to which different population groups within countries are able to access 

care for COVID-19. Likewise, in those areas with a long travel time to the nearest healthcare 

facility of any type (which exist in most countries), symptomatic cases of COVID-19 are 

particularly unlikely to be reported to the healthcare system. Our high-resolution maps for each 

region and country in sub-Saharan Africa provide precise information about this geographic 

variation for local, national, and regional policymakers as well as non-governmental 

organizations.   
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Introduction 

Declared a pandemic by the World Health Organization on March 11 2020,1 SARS-CoV-2 has 

caused over nine million confirmed infections and the disease it can trigger – coronavirus 

disease 2019 (COVID-19) – has led to almost 500,000 reported deaths across the world by late 

June 2020.2 While low testing numbers do not allow for a reliable assessment of the extent of 

the epidemic in sub-Saharan Africa (SSA), the region had over 300,000 reported infections and 

almost 9,000 deaths due to SARS-CoV-2 as of June 24 2020.2 Epidemiological modelling 

suggests that COVID-19 could lead to between 300,000 and 2.5 million deaths in SSA, 

depending on modelling assumptions and the mitigation policies that are adopted.3 

 

There are numerous barriers to receiving high-quality healthcare in SSA, including financial 

barriers to accessing care, weak supply chains, and understaffing of healthcare facilities.4 

However, physical distance to the nearest healthcare facility – and the associated requirements 

for transport options, cost of transport, and time lost from other income-generating activities – 

consistently figure as one of the most important barriers to accessing both hospital-based and 

primary care in the region.5–10  

 

Travel time to the nearest healthcare facility and the nearest hospital will likely also play an 

important role in the ability of health systems in SSA to respond to SARS-CoV-2 for three main 

reasons. First, physical access to hospitals will influence whether and how timely individuals 

with COVID-19 are able to seek healthcare. While many hospitals in SSA are not able to 

provide mechanical ventilation,11,12 other critical components of care for those with severe 

COVID-19, such as hemodynamic support, supplemental oxygen therapy, and treatment of co-

infections (e.g., bacterial pneumonia), are more readily available in hospitals in SSA.13,14,15 

Second, physical access to a healthcare facility of any type will impact whether and when during 
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the disease course individuals with COVID-19 contact the healthcare system. These care-

seeking decisions in turn have important ramifications for whether the health system is notified 

of COVID-19 cases and, thus, the monitoring of the epidemic, particularly in settings that are 

unable to conduct large-scale community-based testing for SARS-CoV-2 infections. Third, if 

these options become widely available in SSA in the future, physical access to healthcare 

facilities will likely affect to what degree individuals with COVID-19 take up effective medications 

against the condition and possibly also to what degree they are able to access a vaccine 

against SARS-CoV-2.  

 

Having a detailed understanding of where population groups are located that are both 

vulnerable to COVID-19 and have long travel times to the nearest healthcare facility can inform 

where additional healthcare resources (e.g., the establishment of makeshift hospitals or 

programs to ensure availability of transport to hospitals) are most needed. In addition, such 

knowledge would allow for pinpointing those geographic areas that are most likely to harbour 

the most cases of COVID-19 that were unreported due to lack of physical access to care, which 

in turn can inform the geographic targeting of testing efforts. More broadly, understanding where 

older adults reside who have the least physical access to healthcare can inform health systems’ 

efforts to improve care for conditions that are common in this age group, particularly chronic 

non-communicable diseases and their sequelae. By assembling a unique dataset from both 

crowd-sourced data and official records by governments and international organizations, this 

study, therefore, aimed to create highly detailed maps of estimated travel time for adults aged 

60 years and older in SSA to both the nearest hospital and the closest healthcare facility of any 

type.  
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Methods 

Data sources for the geolocation of healthcare facilities:  

We used two data sources: healthcare facility data from the OpenStreetMap (OSM) project and 

a geocoded inventory of healthcare facilities published by the KEMRI Wellcome Trust Research 

Programme.16,17 OSM is a collaborative online platform to map, edit, and share geospatial data 

globally. Started in 2004, OSM evolved from a crowd-sourced alternative for proprietary map 

data providers, to an important complementary data source in humanitarian settings,18,19 and a 

widely used source of information for base maps as well as for critical infrastructure in the global 

South.20 Querying the database for all objects with either “amenity” or “healthcare” as key and 

either “hospital”, “clinic”, or “doctors” as value, we extracted all healthcare facilities mapped in 

OSM with their geographic coordinates using the ohsome api.21 We identified 24,571 healthcare 

facilities of which 13,392 were tagged as hospitals. 

 

The second data source used in this analysis was an inventory of 98,745 public-sector 

healthcare facilities across all countries of SSA except for five small island states (Cape Verde, 

Comoros, Mauritius, Sao Tomé & Principé, and the Seychelles), assembled and published by 

the KEMRI Wellcome Trust Programme.17 The primary source of data were master facility lists 

(MFLs) of national Ministries of Health and documentation by United Nations and non-

governmental organizations. Additional sources included websites and data portals by SSA 

governments, health sector reports, and personal communications. We henceforth refer to this 

dataset as the MFL dataset. 52% of the healthcare facilities contained in the data were manually 

geocoded by the KEMRI Wellcome Trust Programme team. For Sudan, Guinea-Bissau, and ten 

out of 18 provinces in Angola, the MFL dataset contains the geographic coordinates of hospitals 

only. The MFL dataset included 92,245 healthcare facilities in our study countries of which 

4,720 were classified as hospitals. While the KEMRI Wellcome Trust Programme team used, 
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among other tools, OSM to assign geocodes to healthcare facilities in the MFL dataset that had 

a missing geocode,17 they did not use OSM to identify healthcare facilities that were not already 

contained in the MFL dataset.  

 

We verified the degree to which the GPS coordinates for a random sample of 20 healthcare 

facilities (320 facilities in total) for each of the 16 strata resulting from the possible permutations 

of healthcare facility type (primary care or hospital), dataset (OSM or MFL data), and region 

overlapped with building structures and human settlements in Bing satellite imagery. The results 

are shown in Table S1.  

 

Data source for the geolocation of the population: 

Population counts for adults aged 60 years and older were obtained from the WorldPop 

project.22 The counts reflect projections for 2020 at a spatial resolution of 1 km2. The WorldPop 

project built this dataset using a semi-automated dasymetric mapping method that employs a 

Random Forest classifier to disaggregate census data at the level of national census tracks to 1 

km2 areas.23 Predictors used were geographical properties, such as topography, climate, and 

land cover, as well as the density of human-built features, such as nighttime lights, roads, and 

buildings.  

 

Estimating travel time to the nearest healthcare facility: 

We merged the OSM and MFL dataset such that our estimated travel times are the travel time 

to the nearest healthcare facility, regardless of the data source in which the facility is listed. We 

chose this strategy because both datasets are more likely to be missing existing healthcare 

facilities than to falsely list a non-existing healthcare facility. We estimated travel time to the 

nearest healthcare facility separately for hospitals and healthcare facilities of any type. Hospitals 

were chosen as one entity of interest because most healthcare interventions to care for 
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individuals with severe COVID-19 require hospital-based care. Healthcare facilities of any type 

were chosen as an additional entity of interest because physical access to any healthcare 

facility likely influences the degree to which individuals with COVID-19 present to the healthcare 

system and, thus, the extent to which the healthcare system is made aware of new COVID-19 

cases. In the absence of community-based screening for SARS-CoV-2 infections and ignoring 

that more remote areas may experience less SARS-CoV-2 transmission, areas with low 

physical access to healthcare facilities of any type may, thus, have a disproportionately high 

number of unreported COVID-19 cases.  

 

We used the AccessMod tool (version 5.6.33) to estimate travel time.25 AccessMod employs a 

raster-based cost-distance algorithm, whereby each raster cell is associated with a cost value 

that determines the time required to travel through this cell. The cost for each cell was modelled 

using the 2018 Copernicus Global Land Cover product and the Shuttle Radar Topography 

Mission (SRTM v. 4) digital elevation model as basic impedance surface.24,25 In addition, we 

used OSM data to ascertain the road network and locations of rivers and open water (which 

were considered barriers for any kind of travel). Aligning with previous studies in SSA,27 we 

assigned a travel speed of 100km/h to motorways and primary roads, 50km/h to secondary 

roads, and 30 km/h to tertiary roads. Barren land and built-up areas were assigned a 5km/h and 

forests a 2 km/h walking speed. The model was created at a spatial resolution of 100m2. For 

both OSM and MFL data, we calculated the travel time from each cell to the nearest healthcare 

facility of any type and the closest hospital. These results were then aggregated to a 1km2 

resolution to match the resolution of the WorldPop population data. Our analyses assumed that 

individuals were able to cross national borders to reach the nearest healthcare facility and we 

did not assign an additional time cost for a border crossing. Similarly, even though we show 

maps separately for each region, our travel time estimates assumed that individuals were able 

to cross regional borders and we did not apply a time cost for this crossing. We did not allow for 
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variations in travel time by time of day or day of the week.    

 

Statistical analysis: 

We plotted the distribution of travel time, separately for hospitals and healthcare facilities of any 

type, in each country. In addition, we mapped the estimated travel time at a 1km x 1km 

resolution both as a continuous variable and when categorizing travel time into less than two 

hours, two to six hours, six to 12 hours, and more than 12 hours for the nearest hospital, and 

less than one hour, one to two hours, two to six hours, and more than six hours for the nearest 

healthcare facility of any type. When summarizing our data as binomial proportions, we show 

two-sided 95% confidence intervals using the Wilson score interval.26 Other than the calculation 

of travel time, which was carried out using AccessMod 5, all analyses were conducted in R 

version 3.6.3.27 
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Results 

Sample characteristics: 

Across our two datasets, the population density of healthcare facilities varied from 0.067 

facilities per 100,000 in Burkina Faso (MFL data) to 11.008 facilities per 100,000 in the Central 

African Republic (OSM data) for hospitals, and from 0.034 facilities per 100,000 in Eritrea (OSM 

data) to 28.053 facilities per 100,000 in Gabon (MFL data) for healthcare facilities of any type. 
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Table 1. Population and number of healthcare facilities by country 

Country 

Population (millions) Number of healthcare facilities Number of healthcare facilities per 100,000 
population 

Total Age 60+ 
MFL OSM MFL OSM 

Primary 
care Hospitals Total Primary 

care Hospitals Total Primary 
care Hospitals Total Primary 

care Hospitals Total 

 
Central Africa               

Burundi 13.097 0.534 619 49 668 22 1317 1339 4.726 0.374 5.101 0.168 10.056 10.224 
Cameroon 26.265 1.673 2825 181 3006 478 541 1019 10.756 0.689 11.445 1.820 2.060 3.880 
Central African Republic 5.360 0.143 526 20 546 17 590 607 9.814 0.373 10.187 0.317 11.008 11.326 
Chad 16.435 0.747 1164 79 1243 90 140 230 7.082 0.481 7.563 0.548 0.852 1.399 
DRC 89.636 3.908 14096 432 14528 1383 724 2107 15.726 0.482 16.208 1.543 0.808 2.351 
Equatorial Guinea 0.925 0.044 28 14 42 2 5 7 3.027 1.514 4.541 0.216 0.541 0.757 
Gabon 1.829 0.124 513 17 530 153 56 209 28.053 0.930 28.983 8.367 3.062 11.429 
Republic of the Congo 5.244 0.176 308 27 335 81 87 168 5.873 0.515 6.388 1.545 1.659 3.204 
 
East Africa               
Djibouti 0.671 0.023 50 13 63 6 26 32 7.449 1.937 9.386 0.894 3.873 4.767 
Eritrea 5.955 0.259 252 20 272 2 19 21 4.232 0.336 4.568 0.034 0.319 0.353 
Ethiopia 111.731 4.780 5014 164 5178 184 272 456 4.488 0.147 4.634 0.165 0.243 0.408 
Kenya 51.513 2.202 5608 394 6002 279 811 1090 10.887 0.765 11.651 0.542 1.574 2.116 
Rwanda 13.299 0.512 538 48 586 55 82 137 4.046 0.361 4.406 0.414 0.617 1.030 
Somalia 12.459 0.574 760 73 833 7 40 47 6.100 0.586 6.686 0.056 0.321 0.377 
South Sudan 14.112 0.545 1684 41 1725 36 68 104 11.933 0.291 12.224 0.255 0.482 0.737 
Sudan 45.292 2.374 5 259 264 88 300 388 0.011 0.572 0.583 0.194 0.662 0.857 
Tanzania 61.897 2.762 6159 222 6381 1015 977 1992 9.950 0.359 10.309 1.640 1.578 3.218 
Uganda 45.982 2.043 3582 121 3703 1728 546 2274 7.790 0.263 8.053 3.758 1.187 4.945 
 
Southern Africa               
Angola 29.150 1.043 1289 150 1439 76 162 238 4.422 0.515 4.936 0.261 0.556 0.816 
Botswana 2.443 0.130 560 28 588 80 77 157 22.924 1.146 24.071 3.275 3.152 6.427 
eSwatini 1.362 0.060 124 6 130 6 25 31 9.107 0.441 9.548 0.441 1.836 2.277 
Lesotho 2.232 0.187 92 14 106 20 44 64 4.121 0.627 4.748 0.896 1.971 2.867 
Madagascar 27.555 0.969 2497 117 2614 59 218 277 9.062 0.425 9.486 0.214 0.791 1.005 
Malawi 20.052 0.843 574 83 657 36 194 230 2.863 0.414 3.276 0.180 0.967 1.147 
Mozambique 31.732 1.452 1499 61 1560 740 148 888 4.724 0.192 4.916 2.332 0.466 2.798 
Namibia 2.734 0.164 322 37 359 48 83 131 11.780 1.354 13.133 1.756 3.036 4.792 
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South Africa 56.423 4.614 3951 329 4280 252 644 896 7.002 0.583 7.586 0.447 1.141 1.588 
Zambia 18.784 0.713 1163 89 1252 61 129 190 6.192 0.474 6.665 0.325 0.687 1.012 
Zimbabwe 17.363 0.927 1031 170 1201 98 148 246 5.938 0.979 6.917 0.564 0.852 1.417 
 
West Africa               
Benin 12.418 0.717 771 48 819 227 214 441 6.209 0.387 6.595 1.828 1.723 3.551 
Burkina Faso 20.829 1.061 1711 14 1725 292 175 467 8.214 0.067 8.282 1.402 0.840 2.242 
Ghana 30.256 1.582 1679 178 1857 256 333 589 5.549 0.588 6.138 0.846 1.101 1.947 
Guinea 14.260 1.024 1482 36 1518 240 97 337 10.393 0.252 10.645 1.683 0.680 2.363 
Guinea-Bissau 2.027 0.098 0 8 8 11 18 29 0.000 0.395 0.395 0.543 0.888 1.431 
Ivory Coast 25.170 0.911 1638 95 1733 793 260 1053 6.508 0.377 6.885 3.151 1.033 4.184 
Liberia 4.953 0.243 668 33 701 126 51 177 13.488 0.666 14.154 2.544 1.030 3.574 
Mali 20.542 1.154 1446 18 1464 678 140 818 7.039 0.088 7.127 3.301 0.682 3.982 
Mauritania 4.509 0.282 626 19 645 30 70 100 13.883 0.421 14.304 0.665 1.552 2.218 
Niger 24.140 1.280 2794 41 2835 154 113 267 11.574 0.170 11.744 0.638 0.468 1.106 
Nigeria 205.773 10.227 18714 887 19601 557 2888 3445 9.094 0.431 9.526 0.271 1.403 1.674 
Senegal 17.384 0.943 1198 27 1225 306 184 490 6.891 0.155 7.047 1.760 1.058 2.819 
Sierra Leone 6.951 0.433 1060 28 1088 148 145 293 15.249 0.403 15.652 2.129 2.086 4.215 
The Gambia 2.186 0.107 91 5 96 11 58 69 4.162 0.229 4.391 0.503 2.653 3.156 
Togo 8.296 0.534 149 37 186 92 172 264 1.796 0.446 2.242 1.109 2.073 3.182 
 
Sub-Saharan Africa 1131.227 55.123 90860 4732 95592 11023 13391 24414 8.032 0.417 8.449 0.988 1.183 2.277 
Abbreviations: MFL=Master Facility List data; OSM=OpenStreetMap dataset; DRC=Democratic Republic of the Congo 
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Distribution of travel time to the nearest healthcare facility: 

Across SSA, the proportion of adults aged 60 years and older with an estimated travel time of 

greater than six hours to the nearest hospital was 9.6% (95% CI: 5.2 – 16.9) across SSA, 

varying from 0.0% (95% CI: 0.0 – 3.7) in Burundi and The Gambia to 40.9% (95% CI: 31.8 – 

50.7) in Sudan (Figure S1). For healthcare facilities of any type and using a travel time cut-off of 

two hours, the corresponding proportions were 15.9% (95% CI: 10.1 – 24.4) across SSA, 

ranging from 0.4% (95% CI: 0.0 – 4.4) in Burundi to 59.4% (95% CI: 50.1 – 69.0) in Sudan 

(Figure S2).  

 

The shape of the distribution of travel time to the nearest hospital for adults aged 60 years and 

older varied greatly across countries (Figure 1). It ranged from a distribution in which the vast 

majority of the population is within 60 minutes travel time (e.g., in Burundi), to distributions in 

which the population was almost equally spread across the range of travel time from 0 minutes 

to four hours (e.g., in Ethiopia). For the nearest healthcare facility of any type, in contrast, the 

distribution was more heavily skewed towards very short travel times (Figure 2), with the 

proportion of adults aged 60 years and older who reside within 30 minutes of traveling to the 

nearest facility being at least 25% in 43 of our 44 study countries. The travel time distributions 

are shown separately for the MFL and the OSM dataset in Figures S3 to S6.  
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Figure 1. Distribution of travel time to the nearest hospital for adults aged 60 years and 
older, by country1 

Abbreviations: DRC=Democratic Republic of the Congo 
1 Countries were ordered in ascending order by the proportion of adults aged 60 years and older in their population 
who reside in a 1km x 1km area that has an estimated travel time >6 hours to the nearest hospital.  
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Figure 2. Distribution of travel time to the nearest healthcare facility of any type for adults 
aged 60 years and older, by country1 

Abbreviations: DRC=Democratic Republic of the Congo 
1 Countries were ordered in ascending order by the proportion of adults aged 60 years and older in their population 
who reside in a 1km x 1km area that has an estimated travel time >2 hours to the nearest healthcare facility.  
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Maps of travel time to the nearest hospital: 

Figure 3 shows the population density of adults aged 60 years and older as well as the 

estimated travel time among these adults to the nearest hospital at a 1km x 1km resolution. The 

third column of maps focusses on populated areas (which we defined as areas with at least one 

adult aged 60 years and older per km2) and categorizes travel time into less than two hours, two 

hours to less than six hours, six hours to less than 12 hours, and more than 12 hours. This 

column shows that almost all countries in SSA contain populated areas that have an estimated 

travel time to the nearest hospital of greater than 12 hours (indicated as the areas in dark red). 

Countries with many of these 1km2 areas with poor physical access to hospital care included the 

Democratic Republic of the Congo, Madagascar, Ethiopia, Sudan, South Sudan, Mozambique, 

and Mauritania. More detailed maps created separately for each country are shown in Figures 

S7 – S50. Regional maps created using only the MFL and only the OSM data are shown in 

Figure S51 and Figure S52, respectively.  
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Figure 3. Maps of travel time to the nearest hospital for adults ≥60 years, by region  
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Maps of travel time to the nearest healthcare facility of any type: 

Figure 4 shows the same variables as Figure 3 but for healthcare facilities of any type (as 

opposed to hospitals only). Countries with a high number of these 1km2 areas with poor physical 

access to a healthcare facility included the Democratic Republic of the Congo, Sudan, Ethiopia, 

Madagascar, Mozambique, South Sudan, and Angola. Maps created separately for each 

country are shown in Figures S53 – S96. Regional maps created using only the MFL and only 

the OSM data are shown in Figure S97 and Figure S98, respectively. 
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Figure 4. Maps of travel time to the nearest healthcare facility for adults ≥60 years, by region  
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Discussion 

With approximately 10% of adults aged 60 years and older across SSA having an estimated 

travel time to the nearest hospital of greater than six hours, physical access to healthcare will 

likely play a major role in whether older adults in this world region will be able to seek care for 

COVID-19. By precisely identifying where older adults are residing who have a particularly high 

estimated travel time to the nearest hospital, our high-resolution maps can inform policy makers 

as to where interventions to increase physical access to hospital care are needed most urgently. 

Such interventions could include transport programs to existing hospitals and the establishment 

of make-shift hospitals. In addition, our maps of estimated travel time to the nearest healthcare 

facility of any type could help guide policy makers as to which populations are least likely to 

present to the healthcare system when they suffer from COVID-19 symptoms due to a lack of 

physical access to healthcare. This information in turn could be helpful in interpreting monitoring 

data on new cases of COVID-19 from different areas within countries, and in targeting testing 

efforts to those populations that have the greatest need for such tests.   

 

The usefulness and policy relevance of this analysis goes beyond informing countries’ response 

to the SARS-CoV-2 pandemic. Physical access – that is, the time required to travel to a 

healthcare facility, available transport options, and costs for transport – is thought to be one of 

the main barriers to accessing healthcare in SSA.5–10 Yet, there is currently very little detailed 

evidence on how physical access to healthcare varies across SSA, particularly within countries. 

Such evidence, however, is crucial to guide policy makers in identifying those areas that have 

the greatest need for community outreach programs, the establishment of new healthcare 

facilities, and improved transport infrastructure. Our study helps fill this important evidence gap 

for older adults in the region and is, thus, of high relevance for informing countries’ efforts to 

improve care for conditions that affect older adults, particularly chronic non-communicable 
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diseases. Specifically, this study builds on the, to our knowledge, four existing studies that have 

mapped physical access to healthcare in SSA at a subnational level within countries, as well as 

studies that have examined physical access to man-made resources more generally.28 Ouma et 

al. have examined access to emergency hospital care in SSA.29 This study differs from ours in 

that it focussed on women of child-bearing age (15 to 49 years) rather than older adults, did not 

include primary healthcare facilities nor any private-sector healthcare facilities, did not use OSM 

data, employed a cut-off of travel time less or greater than two hours (based on a target set by 

the Lancet Commissions for Global Surgery 203030) rather than analysing the whole distribution, 

analysed data from 2015, and did not provide detailed country-by-country maps. Other relevant 

studies have focussed on the effect of physical access to a healthcare facility on the probability 

of seeking care for a febrile episode in children,31 estimated travel time to healthcare facilities 

among populations at risk of viral haemorrhagic fevers,32 and physical access to major district 

and regional hospitals.33 

 

Another key contribution of our study is the collation of a new dataset on geo-tagged healthcare 

facilities in SSA. By making this dataset available in the public domain and including the location 

of other age groups (not merely adults aged 60 years and older), we allow researchers and 

policy makers to run their own analyses for a variety of demographic groups and add to (or 

alter) the list of geo-tagged healthcare facilities in a country. There is currently no authoritative 

source of the location of all healthcare facilities in SSA. We have combined data from the only 

two existing sources of data for the geolocation of healthcare facilities in the region. We chose 

this approach because it is highly likely that neither dataset is complete, as is evidenced by the 

fact that in some countries the MFL dataset listed a higher number of healthcare facilities than 

the OSM data while the opposite was the case in other countries. Because the OSM project 

relies on volunteers to map and tag healthcare facilities, the OSM data by itself is particularly 

likely to underestimate the density of healthcare facilities in an area. In addition, because the 

 . CC-BY 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted August 26, 2020. .https://doi.org/10.1101/2020.07.17.20152389doi: medRxiv preprint 

https://doi.org/10.1101/2020.07.17.20152389
http://creativecommons.org/licenses/by/4.0/


24 

categorization of a healthcare facility as a primary care facility or a hospital relies on the 

judgement or knowledge of the person tagging the facility, the OSM data likely has inaccuracies 

in the categorization of healthcare facilities into different types. For instance, OSM listed far 

more hospitals than primary care facilities for the Central Africa Republic, which appears 

unlikely to be correct. The fact that OSM contained a higher number of healthcare facilities in 

many countries than did the MFL dataset, especially for hospitals, is, however, encouraging in 

that OSM appears to be a useful source of information for the geolocation of healthcare 

facilities. Importantly, OSM data are likely to improve over time as coverage of smartphones 

increases in SSA and more volunteers map out their local areas. We will, therefore, update our 

dataset on a regular basis. Moving forward, it will be important to continuously monitor the 

validity of the data entered into the OSM and MFL dataset; a task that would ideally be 

accomplished by Ministries of Health in SSA. 

 

This study has several limitations. First and foremost, while we (by combining MFL with OSM 

data) likely provide the most comprehensive source of data for the geolocation of healthcare 

facilities that is currently available, it is still likely to miss a substantial proportion of healthcare 

facilities. The degree to which this is the case probably varies between countries as both the 

participation in the OSM project and the degree to which documentation used for the MFL 

dataset were available and complete differ across countries.34 Second, we do not have any data 

on the readiness of healthcare facilities to provide care, nor the quality of care provided at 

healthcare facilities. Similarly, we did not have information on the functioning of referral systems 

from primary to secondary and tertiary care, which impacts access to effective healthcare for 

COVID-19 and other conditions requiring more specialized care. These factors are likely to vary 

across and within countries.35 Third, a limitation of our analysis for the COVID-19 response is 

that governments may decide that not all hospitals in a country should be providing care for 

COVID-19. Fourth, our analysis does not take into account that vulnerability to COVID-19 is 
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likely affected by factors beyond age that vary across and within countries, including HIV, 

tuberculosis, and malnutrition. We decided against including these factors in our analysis 

because which conditions increase the risk of experiencing a severe disease course, and to 

what degree, is still largely unknown, especially in SSA. Fifth, we did not examine to what 

degree the MFL and OSM dataset contain the same healthcare facilities. Our findings are, thus, 

estimates for travel time to the nearest healthcare facility regardless of whether the facility is 

contained in the MFL or the OSM dataset. This strategy does not introduce any bias as long as 

the same healthcare facility has the same or very similar geographic coordinates in both 

datasets. It is, however, possible that the geographic coordinates for the same healthcare 

facility differed between the two datasets, in which case our analysis would consider these to be 

two different healthcare facilities and, thus, underestimate the true travel time. Lastly, our travel 

time numbers are approximations that, for example, do not take into account the frequency of 

transport services and assign an estimated (rather than measured) travel speed to different 

types of roads. Similarly, we assumed that individuals were able to cross national borders and 

incurred no additional time cost from doing so. In border regions where these assumptions do 

not hold true, our estimated travel times would, thus, underestimate the true travel time. Lastly, 

our analysis focusses on only one aspect of access to healthcare and thus does not, for 

instance, take into account financial barriers to accessing care.   

 

Most countries in SSA contain areas in which older adults have little to no physical access to a 

hospital and (albeit to a lesser extent) healthcare facilities of any type. If COVID-19 becomes a 

generalized epidemic that infects large swaths of countries’ populations in the region, then it will 

be older adults living in these areas who are in a particularly high need for either improved 

transport options to existing hospitals or the provision of make-shift hospital care. Beyond their 

usefulness for the COVID-19 response, our maps could inform health system planning for 
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conditions that commonly affect older adults, such as expansions of care for myocardial 

infarctions and strokes.  
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